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Life insurers realize significant impact from predictive analytics
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Value of predictive analytics initiatives to life insurers
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More efficient use of resources

Reduction in processing time

Increase in profit metrics (e.g., IRR)

Increase in sales

Ability to improve mortality/morbidity

Other

None of these — we haven’t identified measures 
of value for our predictive analytical models
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Predictive analytics is becoming necessary to remain viable
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Actuary
8%
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scientist
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Education and training
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Where do companies believe predictive analytic skillsets are found?
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Generative AI

Sources:

1 https://www.accenture.com/us-en/insights/pulse-of-change

2 https://www.bain.com/insights/its-for-real-generative-ai-takes-hold-in-insurance-distribution/

85%
Insurance execs plan to 

increase investment in 

generative AI within 20241

9%
Insurance execs confident 

they have technology in place 

to leverage generative AI1

15%
Increased revenue for 

insurers2

10%
Reduction in expenses for 

insurers2
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Use cases
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Business objectives and strategic goals for pricing
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Increase 
in margin 

and revenue

Consistency 
of decisions

Be more strategic 
by increasing 
understanding 
and control of 
your business

Emerging life experience demonstrates an increase in value of 2% to 5%

of annual premiums from initial dynamic pricing implementations,

with the potential for up to 10%

Reduce risk 
of dependency 
on competitor 

prices
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Dynamic pricing
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Administration systems
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via various distribution channels
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What are you trying to achieve by revolutionizing your underwriting?

Business objectives and strategic goals for underwriting
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Increase 
Profitability by 

Selecting the Best 
Risks

Improve the 
Customer 

Experience

Reduce 
Underwriting 

Expenses

Remain 
Competitive
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Software can be used to analyze data

Modern (accelerated) underwriting
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Modern (accelerated) underwriting

12© 2024 WTW. Proprietary and confidential. For WTW and WTW client use only.

Algorithm 

built using 

machine 

learning 

techniques

Underwriting
Model

Automated Risk Classification

Underwriter
Review

Issue

Issue

Decline

Decline

Underwriter
Review

Collect full

underwriting
Underwriter

Automated Decline

Rules 
Engine

Actual 

Data

Deploy

U
n

d
e
rw

ritin
g

 D
e
c
is

io
n

Actual Results



wtwco.com

Final Model with 

adjustments
Adjustments

Final Raw 

Model

Experience analysis
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Data Scrubbing Modeling Implementation
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Real world example of predictive analytics benefits
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What are you looking for?

Desired characteristics of advanced analytics tools
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Flexibility
Fewer 

human hours 
needed

Strong 
governance

Ease of use
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Predictive Analytics

Predictive analytics is the use of various modeling techniques (including machine learning) to analyze 

historical data to identify patterns that might predict future outcomes
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What happened?

Descriptive Analytics

What might

happen next?

Predictive Analytics

What would happen if I do this?

Prescriptive Analytics
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Predictive analytics cannot solve all problems

It’s important to remember that predictive analytics only works if the problem

is actually solvable with the data that you have

Key Considerations:

• You can clearly identify and define a business issue that needs to be addressed

• You can address the issue with a few well-defined questions

• You have plenty of high-quality data that can be used to answer these questions

• You are certain the predictions will drive actions

• You are confident that it is better than any existing process or approach

• You can continue to monitor and update the models when new data is available
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Predictive analysis process
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Iterative process
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Validation framework

1. Problem identification

2. Problem scope, 

project planning

3. Data Preparation

4. Data Exploration 5a. Feature Generation

5b. Feature Selection

6a. Model Build

6b. Model Selection
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Validation framework

20© 2024 WTW. Proprietary and confidential. For WTW and WTW client use only.

Training / 
Modeling

Validation / 
Holdout

Testing

D
a
ta

 p
re

p
a
ra

ti
o
n
, 

e
x
p
lo

ra
ti
o
n
 &

 
fe

a
tu

re
 g

e
n
e
ra

ti
o
n

Model build

Feature 
selection & 
parameter 

tuning

Model selection

Assess goodness 
of fit & compare 

models

Test final 
model



wtwco.com

Feature development

21© 2024 WTW. Proprietary and confidential. For WTW and WTW client use only.



wtwco.com

Some key terms to remember
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Exposure
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What is the goal of model selection?

The goal is to produce an analysis that explains recent historical experience and is predictive of future experience
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Underfit:

Predictive

Poor explanatory power

Overfit:

Poor predictive power

Explains history

Best Models

Model Complexity 

2. Balance predictive and explanatory effects

The risk in simplicity is to miss signal whereas the risk in complexity is to overreact to the noise

=Data Signal Noise1. Separate the signal from the noise +
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ImplementationStability
Execution 

speed
Analytical time 

& effort
Interpretation

What makes a good model?

All of these factors go into model selection
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Predictive 

Power
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Remember…
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“…all models are wrong, but 
some models are useful.”

- George Box
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Machine learning
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Generalized linear models (GLMs)

GLMs take the following form:
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Link function (g=h-1) 

determines how 

variables are related

Reflects the variability of the 

underlying process and can be 

any distribution within a broad 

family (exponential distributions)

• Include variables that are predictive; 
exclude those that are not

• Simplify, if necessary, using groups 
and curves

• Include combinations of variables if 
necessary

• Best combination is determined by 
experiment, using a combination of 
statistics and judgment

y        =        h(Combination of variables)        +        Error

Process Link Function Error Structure

Frequency Log Poisson

Severity Log Gamma

Yes/No Behavior Logit Binomial
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Decision trees

• Decision Trees (Classification and Regression 

Trees) determine a set of rules that segment 

observations

• The predicted value is the average value within 

the terminal node

• The model stops when no further splitting will 

improve results, or some stopping condition is 

satisfied

28© 2024 WTW. Proprietary and confidential. For WTW and WTW client use only.

Survival of passengers of the Titanic

# of siblings

or spouses
> 2.5?
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Random forests

Roughly speaking, fitting a random forest involves:

• Obtaining numerous random samples of the data (with replacement)

• Fitting a simple tree on each sample

• The model is an average of these trees
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The idea is that the combination of 
simple trees fit on different samples 
avoids overfitting to the data, and is 
more predictive than any single tree
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Model comparison
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The human element is still critical

What could go wrong?
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FeedbackModel becomes outdated

Unexpected swings

Causes changes in behavior

Unethical

Misunderstood and 
so misapplied

Performs badly 
in some circumstances

Application

Model “wrong” (bias)

Overfitting

Analysis

Smoothing and/or distortion?

Data Prep

Selection bias

Data Choice
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What are the challenges to consider?
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Expertise Computer/IT

Systems

Privacy Acceptance
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More information
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Justin Fountain
WTW
5 Concourse Pkwy
Atlanta, GA 30306

Direct: +1 678 684 0559
Mobile: +1 770 826 9339

justin.fountain@wtwco.com

Actuarial Standards of Practice

• Setting Assumptions (proposed)

• ASOP 2 – Nonguaranteed Elements

• ASOP 54 – Pricing

• ASOP 23 – Data Quality

• ASOP 41 – Actuarial Communications

Links

soa.org/sections/pred-analytics-futurism/

soa.org/research/topics/pred-analytics-topic-landing/

soa.org/research/topics/life-exp-study-list/

mailto:justin.fountain@wtwco.com
https://www.soa.org/sections/pred-analytics-futurism/
https://www.soa.org/research/topics/pred-analytics-topic-landing/
https://www.soa.org/research/topics/life-exp-study-list/
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